Integral Solutions - Integral Two Anti-Derivative Of The Joint Distribution For A Brownian Motion And Its Maximum And Minimum

Gary Schurman MBE, CFA

We will define the variable W_{t} to be the value of a Brownian motion at time t where $W_{0}=0$. Assume that we have a barrier with a value of m that the Brownian motion W_{t} may or may not cross over the time interval $[0, T]$. Assume also that we have a threshold value w that may be [greater than or equal to] or [less than or equal to] the value of the Brownian motion W_{t} at time T.

We will define the variable μ to be expected return mean, the variable ϕ to be dividend yield, and the variable σ to expected return volatility. The Brownian motion at time T has the following distribution...

$$
\begin{equation*}
W_{T} \sim N[\alpha, v] \ldots \text { where } \ldots \alpha=\left(\mu-\phi-\frac{1}{2} \sigma^{2}\right) T \ldots \text { and } . . . v=\sigma^{2} T \tag{1}
\end{equation*}
$$

We have the following two barrier problems:
The Maximum Barrier Problem - Probability that W_{t} reaches or exceeds the maximum barrier m over the time inteval $[0, T]$ and ends up at or below the threshold value w at time T :

We want to find... Prob $\left[\operatorname{MAX}\left(W_{t}\right) \geq m, W_{T} \leq w\right]$...where... $m>0$...and... $w \leq m \ldots$ and... $\Delta=+1$
The Minimum Barrier Problem - Probability that W_{t} reaches or falls below the minimum barrier m over the time inteval $[0, T]$ and ends up at or above the threshold value w at time T :

$$
\begin{equation*}
\text { We want to find... Prob }\left[\operatorname{MIN}\left(W_{t}\right) \leq m\right] \ldots \text { where... } m<0 \text {...and... } w \geq m \ldots \text { and... } \Delta=-1 \tag{3}
\end{equation*}
$$

Problem Setup

We want to solve the following joint density double integral...

$$
\begin{equation*}
I=\iint \frac{2(2 m-w)}{v \sqrt{2 \pi v}} \operatorname{Exp}\left\{\frac{\alpha w}{v}-\frac{\alpha^{2}}{2 v}-\frac{1}{2 v}(2 m-w)^{2}\right\} \delta m \delta w \tag{4}
\end{equation*}
$$

We will define the function $a(m, w)$ as follows...

$$
\begin{equation*}
a(m, w)=\frac{2(2 m-w)}{v \sqrt{2 \pi v}} \operatorname{Exp}\left\{\frac{\alpha w}{v}-\frac{\alpha^{2}}{2 v}-\frac{1}{2 v}(2 m-w)^{2}\right\} \tag{5}
\end{equation*}
$$

Using Equation (5) above we can rewrite Equation (4) above as...

$$
\begin{equation*}
I=\iint a(m, w) \delta m \delta w \tag{6}
\end{equation*}
$$

To solve the integral above we need to calculate the anti-derivative of the function $a(m, w)$ with respect to the barrier variable m. If we define the function $b(m, w)$ to be the anti-derivative of the function $a(m, w)$ then our goal is the following...

$$
\begin{equation*}
\text { We want to define } b(m, w) \ldots \text { such that... } a(m, w)=\frac{\delta b(m, w)}{\delta m} \tag{7}
\end{equation*}
$$

Finding The Anti-Derivative

Because the anti-derivative of Equation (5) above is calculated with respect to the variable m we will combine all non-m variables into one function. We will define the function $g(w)$ to be the following equation...

$$
\begin{equation*}
g(w)=\frac{\alpha w}{v}-\frac{\alpha^{2}}{2 v} \tag{8}
\end{equation*}
$$

Using Equation (8) above we can rewrite Equation (5) above as...

$$
\begin{equation*}
a(m, w)=\frac{2(2 m-w)}{v \sqrt{2 \pi v}} \operatorname{Exp}\left\{g(w)-\frac{1}{2 v}(2 m-w)^{2}\right\} \tag{9}
\end{equation*}
$$

We will define the variable λ to be the following equation...

$$
\begin{equation*}
\lambda=2 m-w \ldots \text { such that... } \frac{\delta \lambda}{\delta m}=2 \tag{10}
\end{equation*}
$$

Using Equation (10) above we will define the variable θ to be the following equation...

$$
\begin{equation*}
\theta=-\frac{1}{2 v}(2 m-w)^{2}=-\frac{1}{2 v} \lambda^{2} \ldots \text { such that... } \frac{\delta \theta}{\delta \lambda}=-\frac{\lambda}{v}=-\frac{2 m-w}{v} \tag{11}
\end{equation*}
$$

Using Equations (10) and (11) above the equation for the derivative of the variable θ with respect to m is...

$$
\begin{equation*}
\frac{\delta \theta}{\delta m}=\frac{\delta \theta}{\delta \lambda} \frac{\delta \lambda}{\delta m}=\frac{-2(2 m-w)}{v} \tag{12}
\end{equation*}
$$

We will define the function $b(m, w)$ in Equation (7) above as follows...

$$
\begin{equation*}
b(m, w)=\frac{1}{\sqrt{2 \pi v}} \operatorname{Exp}\{g(w)\} \operatorname{Exp}\{\theta\} \ldots \text { where... } \frac{\delta b(m, w)}{\delta \theta}=\frac{1}{\sqrt{2 \pi v}} \operatorname{Exp}\{g(w)\} \operatorname{Exp}\{\theta\} \tag{13}
\end{equation*}
$$

Proof

We will now prove that the function $b(m, w)$ in Equation (13) above is the anti-derivative of the function $a(m, w)$ in Equation (5) above with respect to the barrier variable m. Note that we can rewrite Equation (7) above as.

$$
\begin{equation*}
a(m, w)=\frac{\delta b(m, w)}{\delta m}=\frac{\delta b(m, w)}{\delta \theta} \frac{\delta \theta}{\delta m} \tag{14}
\end{equation*}
$$

Using Equations (11) and (13) above we can rewrite the right side of Equation (14) as...

$$
\begin{align*}
\frac{\delta b(m, w)}{\delta \theta} \frac{\delta \theta}{\delta m} & =\frac{1}{\sqrt{2 \pi v}} \operatorname{Exp}\{g(w)\} \operatorname{Exp}\{\theta\} \times \frac{-2(2 m-w)}{v} \\
& =\frac{-2(2 m-w)}{v \sqrt{2 \pi v}} \operatorname{Exp}\{g(w)\} \operatorname{Exp}\{\theta\} \\
& =\frac{2(w-2 m)}{v \sqrt{2 \pi v}} \operatorname{Exp}\left\{\frac{\alpha w}{v}-\frac{\alpha^{2}}{2 v}-\frac{1}{2 v}(2 m-w)^{2}\right\} \tag{15}
\end{align*}
$$

Equation (15) above proves that the function $b(m, w)$ in Equation (13) above is the anti-derivative of the function $a(m, w)$ in Equation (5) above with respect to the barrier variable m. Note that the function $b(m, w)$ can also be written as...

$$
\begin{equation*}
b(m, w)=\frac{1}{\sqrt{2 \pi v}} \operatorname{Exp}\{g(w)\} \operatorname{Exp}\{\theta\}=\frac{1}{\sqrt{2 \pi v}} \operatorname{Exp}\left\{\frac{\alpha w}{v}-\frac{\alpha^{2}}{2 v}-\frac{1}{2 v}(2 m-w)^{2}\right\} \tag{16}
\end{equation*}
$$

Appendix

If we take Equation (6) above and multiply that equation by the exponential of the Browian motion variable w then we get the following double integral...

$$
\begin{equation*}
I=\iint \operatorname{Exp}\{w\} a(m, w) \delta m \delta w \tag{17}
\end{equation*}
$$

We can rewrite Equation (8) above as...

$$
\begin{equation*}
g(w)=w+\frac{\alpha w}{v}-\frac{\alpha^{2}}{2 v} \tag{18}
\end{equation*}
$$

Using Equations (17) and (18) above the anti-derivative of the product of the joint density function $a(m, w)$ and the exponential of w becomes...

$$
\begin{align*}
b(m, w) & =\frac{1}{\sqrt{2 \pi v}} \operatorname{Exp}\{g(w)\} \operatorname{Exp}\{\theta\} \\
& =\operatorname{Exp}\{w\} \frac{1}{\sqrt{2 \pi v}} \operatorname{Exp}\left\{\frac{\alpha w}{v}-\frac{\alpha^{2}}{2 v}-\frac{1}{2 v}(2 m-w)^{2}\right\} \\
& =\frac{1}{\sqrt{2 \pi v}} \operatorname{Exp}\left\{w+\frac{\alpha w}{v}-\frac{\alpha^{2}}{2 v}-\frac{1}{2 v}(2 m-w)^{2}\right\} \tag{19}
\end{align*}
$$

